
Journal of Statistical Physics, Vol. 124, Nos. 2-4, July/August 2006 ( C© 2006 )
DOI: 10.1007/s10955-006-9038-6

Mathematics of Granular Materials

Cédric Villani1

Received January 18, 2006; accepted February 3, 2006
Published Online: April 28, 2006

This is a short and somewhat informal review on the most mathematical parts of the
kinetic theory of granular media, intended for physicists and for mathematicians outside
the field.
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1. INTRODUCTION

Granular materials are a very trendy subject nowadays, and the number of publi-
cations devoted to it has grown tremendously since the beginning of the nineties.
These contributions deal with experiments, modelling, numerical simulations, in-
dustrial design as well as theoretical work. Some of the most spectacular effects
appearing in the dynamics of granular gases are reviewed in a short and pedagogic
survey by Barrat, Trizac and Ernst;(3) they include clustering, spontaneous loss of
homogeneity, inverse Maxwell Demons, modification of Fourier’s law, violation of
equipartition of energy, and non-Gaussian equilibrium kinetic distributions. There
is also a recent textbook on the subject by Brilliantov and Pöschel.(18)

This field constitutes a potential whole new area of applications opening up
for mathematicians; yet the relevant mathematical literature is still restricted, due
to the extreme theoretical complexity of the subject. The present survey deals with
one of the (relatively) most advanced parts of the theory, in which kinetic models
are used for granular gases, and interactions are described by inelastic collisions.
On this subject, two short reviews by mathematicians are already available in
the published literature: the first one is a concise and very clear introduction by
Cercignani;(25) the other one was written by the author a few years ago (Ref. 44,
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Chapter 5, Sec 2). While these references might still be acceptable from the point
of view of modelling or the presentation, they are by now obsolete as far as the
results are concerned; this is not surprising since the subject is still very young
(the first truly mathematical paper about granular collisions is arguably the work
by Benedetto, Caglioti and Pulvirenti,(17) as late as 1997). Here I shall endeavor
to fill this gap by presenting a tentative up-to-date review of rigorous results in
inelastic collisional kinetic theory. The style will be somewhat informal to ensure
that the text can be read by a wide audience; more precise results and statements
can be found in the quoted research papers, including the two papers by Mischler,
Mouhot and Rodriguez Ricard (39,40) in the present volume.

Although the body of available physics literature is enormous, I decided
to keep the bibliography to the minimum, quoting almost only mathematically
oriented papers, most of them in direct relation to the subject, with the main
exception of a few review papers like Ref. 3; the interested reader will have no
trouble finding physical documentation by starting with the references there. For
the classical kinetic theory, the reader will find almost everything that he or she
needs in the above-mentioned review.(44) Also I did not address hydrodynamic
limits (see e.g. Refs. 10, 18, 34, 43) which are still poorly understood from the
mathematical point of view, and somewhat controversial from the physical point
of view.

2. MODELLING

A typical kinetic model for granular material takes the following form: the
unknown is a time-dependent distribution function in phase space f (t, x, v) (t is
time, x is position and v is velocity) satisfying an equation like

∂ f

∂t
+ v · ∇x f + ∇v · (F f ) = C f + diffusion and/or friction terms. (1)

Here v · ∇x is the usual transport operator, F is a force, that may depend on t and
x, or even on v, and C is an inelastic collision operator describing the effect of
collisions; with energy dissipation built in (this energy dissipation might be due
to the roughness of the surface or just to a non-perfect restitution, and does not
affect the conservation of momentum). It is natural to assume that we are working
in a 3-dimensional space. I shall not discuss boundary conditions (which are very
tricky), but this issue seems to be quite important in the field, since in experiments
granular materials are rarely left alone, but usually forced in one or another way
(shaking, etc.).

The particles themselves are considered as small balls, just as in the popular
model of hard spheres. The usual rules of kinetic description apply: for instance,
one might define a temperature in terms of the variance of the velocity distribution.
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2.1. Collisions

As said above, collisions are supposed to incorporate inelasticity. I shall
only consider inelasticity due to an imperfect restitution of energy, and neglect
rotational degrees of freedom, although they might be quite important.(25,34) The
illustration below provides a schematic picture of what goes on. The incoming
velocities are v and v∗; ω is the impact direction. Would the collision be elastic,
the outgoing velocities would be given by the dashed arrows below; but because
of inelasticity effect, there is some loss of momentum in the impact direction,
resulting in the boldface arrows indicating the outgoing velocities v′ and v′

∗.

Let e stand for the restitution coefficient or (in)elasticity parameter:

〈v′ − v′
∗, ω〉 = −e〈v − v∗, ω〉, 0 ≤ e ≤ 1.

Then the collision equations can be solved into
v′ = v − 1 + e

2
〈v − v∗, ω〉ω,

v′
∗ = v∗ + 1 + e

2
〈v − v∗, ω〉ω.

(2)

In particular the variation of kinetic energy is

|v′|2
2

+ |v′
∗|2
2

− |v|2
2

− |v′
∗|2
2

= −
(

1 − e2

4

)
〈v − v∗, ω〉2 ≤ 0.

In general the coefficient e might depend on the norm of the relative velocity,
that is |v − v∗|, on the deviation angle θ ; for phenomenological reasons a consti-
tutive dependence on the temperature T of the gas is also often assumed. For some
authors, this dependence has important consequences (see e.g. Ref. 11), for others
it does not matter so much; many researchers work with a constant restitution
coefficient. It is good to keep in mind that the two limit regimes e = 1 and e = 0
respectively correspond to elastic (no loss of energy) and sticky collisions (after
collision, particles travel together).
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The velocities v′ have to lie on a certain sphere S with center c′ and radius
r ≤ |v − v∗|/2. It is often convenient to parameterize collisions by the direction
σ of the vector v′ − c′; in the terminology of Ref. 44 this is the σ -representation.
Here are the corresponding formulas:

v′ = v + v∗
2

+
(

1 − e

4

)
(v − v∗) +

(
1 + e

4

)
|v − v∗|σ

v′
∗ = v + v∗

2
−

(
1 − e

4

)
(v − v∗) −

(
1 + e

4

)
|v − v∗|σ.

(3)

The parameter σ varies in the unit sphere S2. The reader can meditate on the figure
below, which is drawn in velocity space (in dashed lines are the elastic rules of
collision).

To write the Boltzmann equation, one needs to compute the pre-collisional
velocities: Given two velocities v and v∗ after collision, find the velocities ′v and
′v∗ before collision. Here are the formulas:

′v = v + v∗
2

−
(

1 − e

4e

)
(v − v∗) +

(
1 + e

4e

)
|v − v∗|σ

′v∗ = v + v∗
2

+
(

1 − e

4e

)
(v − v∗) −

(
1 + e

4e

)
|v − v∗|σ.

(4)

Note carefully that ′v and ′v∗ do not coincide with v′ and v′
∗; in other words,

the collisions are not reversible. This is in agreement with the fact that we are
observing a dissipative process. Accordingly, the Jacobian of the transformation
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(v, v∗) → (′v,′v∗) is not 1, but

J = |v − v∗|
e2|′v −′v∗| . (5)

Remark. In dimension 1, elastic collisions are “stupid”: since {v′, v′
∗} = {v, v∗}

(velocities are either preserved or swapped), these collisions do not change the
velocity distribution. It is not so for inelastic collisions:

{v′, v′
∗} = {v, v∗} or

{
v + v∗

2
± e

2
(v − v∗)

}
depending on the value of σ ∈ {−1,+1}. Similarly,

{v′,′v∗} = {v, v∗} or

{
v + v∗

2
± 1

2e
(v − v∗)

}
.

2.2. Collision Operator

Two collision operators are classically used for describing the effect of colli-
sions on the distribution function. The first one is the Boltzmann collision operator:

Q B( f, f ) =
∫

R3

dv∗
∫

S2

dσ |v − v∗|
(

J
|′v −′v∗|
|v − v∗| f (′v) f (′v∗) − f (v) f (v∗)

)
. (6)

Here the factor |v − v∗| is characteristic of the “hard sphere model”: the mean
number of collisions between particles of given velocities is proportional to the
difference of velocities (this is intuitively obvious); the factor J is given by (5).
The parameters t and x do not appear explicitly in (6), because this operator
only acts on the velocity dependence: in other words, collisions are supposed to
be localized in space and time. The fact that the Boltzmann equation is written
in terms of the “local tensor product” f (x, ·) ⊗ f (x, ·) reflects the fundamental
statistical assumption of molecular chaos (no correlation between pre-collisional
velocities).
Notation. It is customary to write f ′ as a shorthand for f (v′) or f (x, v′); similar
rules apply to f, f∗, f ′

∗,
′f , ′f∗. Also the Boltzmann operator naturally splits into

two parts: Q( f, f ) = Q+( f, f ) − Q−( f, f ), which are traditionally called the
gain term and the loss term. The notation which I use is by no means universal: all
kinds of symbols are used to denote pre- or post-collisional velocities, e.g. v∗, v∗∗,
etc. I recommend the convention with v′ and ′v (due to V. Panferov).

The second popular model is the Enskog collision operator:

QE ( f, f ) = r2
∫

R3

dv∗
∫

S2

dσ |v − v∗|
(

J
|′v −′v∗|
|v − v∗|G(x, x − rω) f (x ′, v)

× f (x − rω,′v∗) − G(x, x + rω) f (x, v) f (x + rω, v∗)

)
(7)
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Here r > 0 is the radius of the particles, ω is the impact direction, and G(x, y) is
the correlation function between points x and y. There are obvious similarities and
obvious differences between the Enskog and the Boltzmann collision operator:
in particular, the space variable enters explicitly in Eq. (7), which means that
collisions are delocalized in space. Moreover, the assumption of molecular chaos
has been dropped, and now the function G takes care of correlations. Roughly
speaking, G is defined by the formula

f (2)(x, v; y, w) = G(x, y) f (x, v) f (y, w),

where f (2) is the two-particle distribution density. The need for such a correlation
function is more or less obvious if one realizes that the assumption of “thick”
spheres implies correlations between various positions: as a trivial example, if a
particle is present at position x, then no particle can be present at y if |x − y| < r .
In practise, G might be given by an explicit expression of x and y, or an expression
of x, y and ρ(x), ρ(y), where ρ(x) stands for the density of the gas at x; it might
even depend on the whole density profile. For more information see the short but
intricate enough discussion by Cercignani.(25)

The mathematical status of the Boltzmann and the Enskog collision op-
erators are not comparable. The localization in the Boltzmann equation leads
to formal simplicity and analytical difficulty; it is also at the source of a rich
mathematical structure, which has contributed to establish the Boltzmann equa-
tion as one of the most renowned and challenging partial differential equa-
tions studied by mathematicians. The Enskog equation on the other hand leads
to a very messy theory and horrendous calculations; it is often considered
with a bit of awe by physicists and mathematicians. It is important to note
that, while the “validity” of the Boltzmann equation for hard spheres has
been established by Lanford, (even though only under certain restrictions, see
Ref. 44, Chapter 1, Sec 2.1) no such result exists for the Enskog equation.
Thus the latter model might be considered as a heuristic or phenomenological
model.

In the context of granular material, however, the Enskog equation is sup-
posed to be much better adapted, since particles are almost “macroscopic” in size.
Whether this will be sufficient to re-boost the theory of the Enskog equation is
still unclear. For the moment, no serious mathematical work on the inelastic En-
skog equation has been performed, so all the rest of these notes will deal with the
Boltzmann equation. Note that the distinction between both models is irrelevant
when the space dependence is taken away.

As a final general comment, it is quite striking to see the devastating effects
of the inelasticity assumption on the classical theory of the Boltzmann equation.
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2.3. When to Use Pre- and Post-Collisional Velocities

The pre-collisional velocities ′v and ′v∗ appear in the collision operator and
are therefore useful whenever one wants to study properties of that operator; in
particular regularity issues, that might be used in a regularity study for the solution
of the equation.

However, most of the time, in practical applications, one studies the density
distribution f via observables, that are integrals of f against some test function
which depends only on v, or on x and v. In that case the correct equation is the
weak version of the Boltzmann collision operator:∫

R3

Q( f, f )(v)ϕ(v)dv =
∫

|v − v∗| f (v) f (v∗)(ϕ(v′) − ϕ(v)) dv dv∗ dσ. (8)

In that sense the formulas for post-collisional velocities are used much more often,
in practise, than the formulas for pre-collisional velocities.

2.4. Variants and Simplifications

The chief simplification is spatial homogeneity, which amounts to look for
solutions of the form f (t, v). While this is a huge simplification, it often allows a
fine description of purely kinetic effects in complicated subjects.

Another way to simplify the Boltzmann equation consists in a reduction of
the dimension, either by symmetry or phenomenological arguments. Thus one
may obtain two-dimensional or even one-dimensional models. As I mentioned
above, a one-dimensional elastic Boltzmann equation is meaningless, but a one-
dimensional inelastic one makes sense.

It is possible to replace the collision kernel |v − v∗| by |v − v∗|γ , for some
exponent γ which varies between, say, −1 and 1. In classical (elastic) kinetic
theory, γ can range from −3 (Coulomb interaction) to 1 (hard spheres). There
is no real microscopic basis for such a generalization in the context of granular
material, but there might be phenomenological reasons. A particularly interesting
case for analytical resolution is γ = 0 (Maxwellian collisions).

Finally, one may take into account only quasi-frontal collisions (θ � π , or,
what amounts to the same by symmetry, θ � 0, that is grazing collisions) or quasi-
elastic collisions (e � 1). In one dimension both asymptotic regimes are about the
same. It is sometimes found in physics literature that velocities in a granular gas
have a tendency to align on each other, which might be a justification for the use
of models where grazing collisions play an important role. Some models that can
be used in this respect look like

QL + ∇v · (
f ∇v( f ∗ |v|γ+2v)

)
,
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where QL is a Landau-Fokker-Planck (elastic) collision operator. Here ∗ stands for
convolution with respect to the velocity; since ∗ commutes with ∇v , the operator
on the right-hand side really is proportional to

∇v ·
(∫

R2

f f∗|v − v∗|γ (v − v∗)dv∗

)
.

There is nothing mysterious in the exponent γ + 2: Taking into account the two
derivatives in v, it corresponds to a homogeneity like |v|γ (γ = 1 for hard spheres).
See Li and Toscani(37) for a study of how certain qualitative properties of this
equation vary with γ .

Here is a “historically” important example of oversimplified model: at the
beginning of the nineties, McNamara and Young suggested the following collision-
type operator in dimension 1:

QMNY( f, f ) = ∂

∂v

(
f ( f ∗ |v|v)

)
,

which remained popular for some time. Most of the first works by mathematicians
in granular media, in particular those by Pulvirenti and co-authors between 1997
and 2000, dealt with the McNamara-Young model.

2.5. Other Operators

Apart from collisions, one may add to the kinetic model various terms which
either model external physical forces, or arise from particular situations. Here are
four such possibilities.

(i) Heat bath: Many experiments about granular material include shaking, as
a way to input energy into the system, counterbalancing the freezing due to
energy loss. A rather trivial but seemingly not so absurd model consists in
a heat bath, or white noise forcing: this amounts to adding to the right-hand
side of the kinetic equation a term like

Te�v f,

where Te is an “external temperature,” normalized to 1 in the sequel.
Such models were introduced by mathematicians and physicists in various
contexts.(6,11,46)

(ii) Friction: Particles may experience extra friction forces if they are going
through a viscous fluid or something to that effect. Here again, there is a
trivial model consisting in adding a drift term to the equation; the most
simple case being that of a linear drift,

α∇v · ( f v) (α > 0).
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(iii) Shear flow: The behavior of grains in a flowing fluid is of interest.
Cercignani(26) proposed the following simplified model. Look for solu-
tions of the free Boltzmann equation

∂ f

∂t
+ v · ∇x f = Q B( f, f )

between two surfaces x2 = 0 and x2 = L , moving at respective speed 0 and
v, with bounce-back boundary conditions. Make the ansatz f (t, x, v) =
f (t, c), where c = v − u(t, x) is the deviation to the local mean velocity;
and assume some self-similarity in the solution, in particular u(t, x) =
K (t)x + v0(t). Then it is found that a sufficient condition for f (t, c) to
solve the problem is

∂ f

∂t
− ∇c f · (K c) = Q( f, f ), (9)

where K is a matrix that can be written, in a well-chosen coordinate system,
with only one nonzero entry, outside the diagonal. In practise, this means
that a simple solution to the shear flow problem can be constructed by
solving the spatially homogeneous Boltzmann equation with an additional
term like, say,

v1
∂ f

∂v2

on the right-hand side.
(iv) Homogeneous Cooling State: Solutions of the “free” inelastic Boltzmann

equation will typically lose energy until all the particles travel at the same
speed (at each point x). For simplicity, let us consider a spatially homoge-
neous situation and assume that the mean velocity is 0; then the asymptotic
state is δ0 (all particles at rest). To study more precisely the asymptotic
behavior, it is natural to “zoom” on the velocity distribution close to 0, that
is to rescale the distribution function. The Boltzmann collision operator
does satisfy some scaling properties: if the collision kernel is proportional
to |v − v∗| in dimension d, then

Q( f (λ·), f (λ·)) = λ−(d+1) Q( f, f )(λ·).
It is not difficult to find that the new unknown f̃ (t̃, ṽ) defined by

f (t, v) = (1 + t)d f̃
(

log(1 + t), (1 + t)v
)

satisfies a nice equation:

∂ f̃

∂ t̃
= Q( f̃ , f̃ ) − ∇ṽ · (ṽ f̃ ).
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That equation now may admit a nontrivial steady state, because the energy-
dissipative effects of the Boltzmann collision operator are balanced by the
energy input coming from the term in −∇v · (v · f ). Any result about
the convergence to such a steady state leads to some qualitative informa-
tion about the way the original equation converges to δ0. Of course, to a
steady state in the new variables t̃ = log(1 + t), ṽ = (1 + t)v is associated
a self-similar solution in the original variables t, v, traditionally called “ho-
mogeneous cooling state.” The moral here is that, to study the relaxation to
homogeneous cooling states, one is led to consider the Boltzmann equation
with an additional anti-drift term

−∇v · ( f v).

Note that the change of variable from time t to time t̃ is logarithmic,
so one has to be careful in interpreting these results (a fast decay in the t
scale does not mean so fast a decay in the original scale).

By the way, similar “logarithmic” rescalings of variables are classical
in the literature about the large-time behavior of diffusion equations, and
also lead to added drift terms. For instance, this rescaling transforms the
heat equation ∂t f = �v f into the linear Fokker-Planck equation ∂t f =
�v f + ∇v · ( f v). (Note that here we gain a drift, not an anti-drift!) The
literature related to such changes of variables is so vast that I prefer not to
provide any reference.

2.6. “Simple Problems”

Here is a non-exhaustive list of problems that at least can be formulated in a
relatively precise mathematical way.

– What is the behavior of temperature in a granular gas? In a spatially
homogeneous gas, a simple dimensional analysis leads to the intuitive
formula

dT

dt
� −const.T 3/2

(think that |v − v∗| has the same physical dimension as
√

T ). This suggests
that the temperature decays like O(t−2) with time; this is classically called
Haff’s law, since it was proposed by Haff(33) in the beginning eighties.
Among other things, Haff’s law implies that the solution at time t lies at
distance O(t−1) to the Dirac mass δu , where u is the mean velocity. In a
spatially inhomogeneous context, things might become more intricate and
the temperature may undergo important spatial variations.
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– What is the large-time behavior? In the case of elastic collisions, a lot
of work has been devoted to the approach of Maxwellian equilibrium, in
relation with the maximum entropy principle and Boltzmann’s H Theorem.
For inelastic collisions there is no H Theorem (only an approximate version
of it when the restitution parameter e is close to 1) and no intuitive way to
attack the problem.

– What about the large velocity behavior? Is it still Gaussian, as in the elastic
case, or not? We shall see that the answer is negative.

– Inhomogeneities and clustering: In the classical theory, spatial homogene-
ity is a very strong assumption, but at least it is stable: under appropri-
ate boundary and size conditions, a weakly inhomogeneous gas remains
weakly inhomogeneous for all times. In the case of inelastic collisions,
there is extensive numerical evidence to support the possibility of inelastic
collapse (temperature falls down to 0 at certain places, meaning that the
variance of the distribution vanishes), clustering (aggregates of particles
with zero temperature form) and ensuing pattern formation. From a the-
oretical perspective, it would be very exciting if such behavior could be
demonstrated; for that, new tools probably have to be developed.

To summarize the state of the art about these questions, I could say that
several (very) simplified models are quite well understood; and that as a general
rule the spatially homogeneous theory is starting to be in a quite decent situation,
although still incomplete. On the other hand there is essentially nothing relevant
known about inhomogeneities.

2.7. Heuristics About the Tail Behavior

One of the most famous predictions of inelastic kinetic theory is the possi-
bility of overpopulated distribution tails, meaning that the typical large-velocity
behavior of the velocity distribution is not Gaussian, but displays much thicker
tails (so the inelasticity results in the presence of many very fast particles, which
is not so intuitive). In addition to the fact that it contradicts the universality of the
familiar Gaussian distribution, one of the reasons why this prediction is famous is
certainly the fact that it can be obtained by quite simple heuristics.

Here is one way to argue. For the free Boltzmann equation, the asymp-
totic state is the Dirac mass, say at zero velocity. Thus the gain term (which
increases the energy) is dominated in some sense by the loss term (which de-
creases the energy). Hence, when studying the large-velocity behavior, it is nat-
ural to neglect the former in front of the latter. Then the loss term is asymp-
totically proportional to something like K |v|γ f , where K is some constant, if
the collision kernel is proportional to |v − v∗|γ (γ = 1 for hard spheres). Let
us look for a radially symmetric distribution function f (v) = f (r ), r = |v|, and
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make the ansatz f (r ) � e−arβ

. Then Q−( f, f ) � Krγ e−arβ

; v f = r−2∂r f ) �
Cr2β−2e−arβ

; ∇v · ( f v) � rβe−arβ

. By balancing dominant terms in the equation
for the steady state one easily obtains

heat bath : β = 1 + γ

2 ;
heat bath + friction : β = 2;
anti-drift : β = γ.

This argument predicts for the hard spheres model tails like e−a|v|3/2
for the heat

bath, like e−a|v|2 for heat bath and friction, and like e−a|v| for homogeneous
cooling states. Such behaviors were predicted, on the basis of slightly more precise
arguments, by Ernst and Brito (27−29) (e.g. see Ref. 28, Sec 4.4). There is all reason
to believe that this is the correct theoretical answer, let apart the special case
β = γ = 0 which is more subtle (as discussed in Ref. 28).

The shear flow case is more intricate since there is no reason for solutions to
be radially symmetric.

2.8. What Is the Trouble with Non-Gaussianity?

The reader might legitimately ask: Elastic collisions lead to Gaussian distri-
butions, but inelastic collisions do not, so what is the big deal? It is no wonder that
a change in the assumptions leads to a change in the conclusion. . .

Yet there is some reason to be struck by the non-Gaussian behavior. In
fact, in the classical kinetic theory there are three different, yet related, ways to
arrive at the Gaussian, or rather the Maxwellian distribution (i.e. a Gaussian with
scalar covariance matrix). The first and probably most well-known is the one by
Boltzmann, which can be stated informally as follows:

Let f be a probability distribution such that

f (v) f (v∗) = F(v + v∗, |v|2 + |v∗|2).

Then f is Maxwellian.
This argument obviously deals with pairs of particles; it is related with the

chaos assumption (particles are uncorrelated before collision) and the conservation
laws (elasticity means conservation of v + v∗ and |v|2 + |v∗|2 through a collision).

Now comes another argument by Maxwell, which considers the system of all
particles as a whole:

Consider N particles with velocities v1, . . . , vN . Assume that these velocities
are randomly uniformly distributed, given the only constraints that (v1 + . . . +
vN )/N = u and (|v1 − u|2 + . . . + |vN − u|2)/N = T are determined. Then, the
law of one these particles, say v1, is very close (if N is large) to a Maxwellian
distribution with mean u and temperature T.
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The requirement that the velocities should be uniformly distributed apart from
the constraints coming from the conservation laws can be seen as a most elementary
example of microcanonical ensemble in statistical mechanics. Actually Maxwell’s
theorem is probably the most basic example of equivalence of ensembles.

The last statement, also due to Maxwell (before Boltzmann’s argument) is
the one which is of most direct interest here. It goes as follows:

Let v be a random velocity in R
3 such that (i) the distribution of v is radially

symmetric, i.e. it only depends on |v|, (ii) the coordinates of v are independent
random variables; then the distribution of v is Maxwellian.

In other words, if we have probability distributions fi , i = 1, 2, 3, such that
f1(v1) f2(v2) f3(v3) = g(v2

1 + v2
2 + v2

3), then each fi has to be Gaussian. (The di-
mension 3 has nothing special; any dimension d ≥ 2 would work just the same.)

The converse of the last statement may be more striking. If the velocity
distribution is not Gaussian, then there are correlations between the components
of the velocity distribution. Roughly speaking, by measuring v1 we can obtain
some information about v2. This looks quite strange if we are used to classical
gases, but from the point of view of mathematics there is no contradiction with the
isotropicity assumption: Take for instance an extreme case where the probability
distribution is supported in {|v| ≤ R}. If I measure v1 to be greater than

√
R2 − 1,

then I know for sure that v2
2 + v2

3 is less than 1; so the various components are
indeed correlated.

3. MAXWELLIAN TOOLBOX

3.1. The Model

Maxwell collisions are defined by the assumption that the collision kernel is
a function of just the deviation angle θ : so the weak form of the collision kernel is∫

R3

Q B( f, f )ϕ =
∫

R3×R3×S2

b(cos θ ) f f∗(ϕ′ − ϕ)dv dv∗ dσ,

and similarly the restitution coefficient e only depends on θ . Actually it is common
practise to choose b and e to be just constants.

This modification makes the model analytically much simpler. To understand
why, think that, by integrating out successively σ , then v∗ in the loss term one
now obtains Q−( f, f ) = K ρ f , where K is a constant and ρ is the macroscopic
density (which can be taken to be just 1 in the spatially homogeneous case). This
should be compared with the loss term for hard spheres, that is K f ( f ∗ |v|).

In classical kinetic theory, Maxwell collisions may be interpreted as describ-
ing interactions between particles that repel each other with a force proportional
to the inverse of the fifth power of the distance. For the description of granular ma-
terial, such an interpretation is certainly irrelevant, so one should rather consider
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the model as just an analytical simplification. An alternative point of view consists
in forgetting about the “true” collisional mechanism and replace it by random
dynamics: Whenever two particles collide, the parameter σ is chosen randomly
on S2 (uniformly if b is a constant). This interpretation is due to Kac (see Ref. 44,
Chapter 1, Sec 2.1) for the elastic case).

With the added structure in the Maxwell model come new specific tools and
features which may be useful. The most important are:

– closed moment equations;
– Fourier transform;
– contracting distances;
– information-theoretical tools.

All this is described and explained, in the elastic case, in (Ref. 44, Chapter 4).
In fact there is a good analogy between the Boltzmann collision operator with
Maxwellian kernel on one hand, and the usual convolution operators on the other
hand. I should insist that so far, all this extra structure has been exploited only in
the spatially homogeneous case, which is the only one considered in this section.

3.2. Temperature Dependence

Replacing the collision kernel |v − v∗| by a function of just θ leads to irrele-
vant temperature behavior. To keep a correct temperature law it is better to replace
|v − v∗| by something which has the same physical dimension: an averaged value
of the relative velocity. The most common choice is something like the square root
of the temperature T : indeed, if v and v∗ are independent random variables dis-
tributed according to the probability density f (v), then the mean value of |v − v∗|2
is ∫

f f∗|v − v∗|2dv dv∗ = 2

(∫
f (v)|v|2dv −

∣∣∣ ∫ f (v)v dv

∣∣∣2
)

= 2T .

So it would be natural to replace |v − v∗| by just
√

2T . There is a dimensional
constant in front of the collision operator, so the

√
2 does not really matter, but

the fact that the collision rate is proportional to the square root of the temperature
is important.

With this modification, from the weak formulation of the Boltzmann equation
it is easy to check that (i) the mean momentum

∫
f v dv is preserved, (ii) the

temperature T(t) at time t satisfies the differential equation

dT

dt
= −K T 3/2,
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which integrates exactly to

T (t) = T (0)

(1 + at)2
(a > 0),

where a is proportional to e(1 − e) for a constant coefficient e. Hence Haff’s law
is correct for this model (this is of course not surprising, we kind of enforced it).
Thus, in the spatially homogeneous case, the effect of the temperature dependence
comes only through an explicit function of time in front of the collision kernel,
and the analytical simplicity of the model is preserved.

3.3. References

The three-dimensional inelastic Maxwellian model was first introduced and
studied by Bobylev, Carrillo and Gamba;(12) at almost the same time, simple
one-dimensional models were studied independently by Baldassari, Marconi and
Puglisi;(2) see also Ben Naı̈m and Krapivski.(4,35) Since then these equations have
been studied thoroughly by several authors. Good recent review papers have been
written by Ben Naı̈m and Krapivsky,(5) Ernst and Brito,(27,28) who survey the
existing physical literature and physical results. In Ref. 28 the emphasis is put on
the Maxwell model as a model arising from stochastic dynamics.

Apart from the above-mentioned works, another important source on the
Maxwell model is the series of papers by Bobylev and Cercignani, sometimes
with other coauthors such as Carrillo, Gamba or Toscani, in various issues of the
Journal of Statistical Physics.(13−15,17)

3.4. Moments Equations

Let P(v) be a polynomial in v, that is, in the variables v1, v2, v3. To compute
the time-evolution of the observable associated with P, one should evaluate∫

R3

Q+( f, f )P dv =
∫

R3×R3

f f∗

(∫
S2

P(v′)dσ

)
dv dv∗.

The expression inside inner parentheses depends only on the polynomial, and
has to satisfy certain homogeneity conditions. Actually, one can show that it is
a polynomial in v and v∗; in particular it can be split into a sum of products of
polynomials: ∫

S2

P(v′) dσ =
∑

i

Pi (v)P∗,i (v∗).

Then one can integrate against f f∗ dv dv∗ and separate variables, obtaining prod-
ucts like (

∫
f Pi )(

∫
f P∗,i ). Of course these polynomials Pi , P∗,i are of lower

degree than P itself. The conclusion is that the equation for the evolution of a
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polynomial moment of a certain order can be expressed in terms of polynomial
moments of lower order. Since the first moments can be evaluated explicitly, we
understand that in principle, the time-evolution of all polynomial moments can
be exactly integrated. For the elastic model, this observation was first made by
Truesdell in the fifties, and it remains relevant in the inelastic case. Of course
things are not so simple because the coefficients in the equations become more
and more tricky as the degree of the polynomial increases, so if one wants precise
estimates one has to be clever to keep these coefficients under control.

It is a classical result in probability theory that a distribution function which
decays fast enough is uniquely determined by all its polynomial moments. So, as
long as one remains in the class of distribution functions which decay very fast
(and in particular have all their moments finite), one can in principle integrate “ex-
plicitly” the spatially homogeneous Boltzmann equation with Maxwellian kernel.
Information about the asymptotic behavior can also be obtained in this way: if
one proves that all polynomial moments of f converge, as time goes to infinity,
to the corresponding polynomial moments of some distribution f∞, this means
that f does converge to f∞, at least in weak sense (in the sense of convergence of
observables).

3.5. Fourier Transform

Let the Fourier transform of f (with respect to the velocity variable) be defined
by

f̂ (ξ ) =
∫

R3

f (v)e−iξ ·vdv.

To compute the time-evolution of the Fourier transform, one is again led to evaluate∫
Q+( f, f )e−iξ ·vdv =

∫
R3×R3

f f∗

(∫
S2

e−iξ ·v′
dσ

)
dv dv∗.

Now, from (3),∫
S2

e−iξ ·v′
dσ = e−iξ ·( v+v∗

2 )e−i( 1−e
4 )ξ ·(v−v∗)

∫
e−i( 1+e

4 )(ξ ·σ )|v−v∗|dσ.

(The reader should not confuse the e standing for exponential, and the one standing
for the restitution coefficient.) The factor in front of the integral is of the form
eiv·keiv∗·k∗ , which is good; but the expression inside the integral is more ugly.
However, in the integration process, the particular direction of ξ should not matter
very much, since it enters the integral only through ξ · σ , and σ varies over the
sphere. As noticed by Bobylev in the seventies, a simple symmetry argument
allows one to replace the expression (ξ · σ )|v − v∗| inside the σ -integral by |ξ |σ ·
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(v − v∗). Then one can write∫
S2

e−iξ ·v′
dσ =

∫
S2

e−iv·ke−iv∗·k∗dσ,

where k and k∗ are certain frequency vectors that depend only on ξ and σ . Then
integrate against f f∗ dv dv∗, and exchange integrals, to come up with∫

Q+( f, f )e−iξ ·vdv =
∫

S2

(∫
R3×R3

f f∗e−iv·ke−iv∗·k∗dv dv∗

)
dσ

=
∫

S2

f̂ (k) f̂ (k∗) dσ.

(For careful such computations in the elastic case, consider, e.g. [Ref. 1,
Appendix].)

To better appreciate what has been achieved, let us rewrite the corresponding
equation for f̂ in the case of a constant collision kernel of unit integral (forgetting
the temperature dependence for simplicity):

∂ f̂

∂t
+ f̂ = 1

4π

∫
S2

f̂ (ξ+) f̂ (ξ−) dσ,

where

ξ± = ξ

2
±

[(
1 − e

4

)
ξ +

(
1 + e

4

)
|ξ |σ

]
.

This looks like a Boltzmann equation, except that the integral is only over
S2, not over R

3 × S2! The R
3 integral has been absorbed into the definition of

Fourier transform. As a consequence, this equation is much simpler and reveals
convenient for

– studying moments (polynomial moments are derivatives in Fourier space
at frequency vector ξ = 0, and it is often more convenient to manipulate
Taylor expansions than moment expansions);

– study the regularity of the Boltzmann equation (regularity is all about
control of the amplitude of high Fourier modes);

– linearizing and computing eigenfunctions and eigenvalues;
– looking for exact equilibrium or self-similar solutions. (Think that Fourier

transform is the standard method for the study of the central limit theo-
rem, which is all about the asymptotic behavior of sequences of densities
obtained by successive convolutions.)
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3.6. Some Results

In the heat bath problem, moment equations have been established by Carrillo,
Cercignani and Gamba,(22) then used to prove the convergence to equilibrium by
Bobylev and Cercignani.(14) This is a neat application of the methods described
before.

The problem of self-similar profiles is more subtle. In dimension d = 1, there
is a simple, explicit Homogeneous Cooling State, or “HCS” (see for instance,
Ref. 15, Sec 2.1):

f (t, v) =
(

2

π
√

T (t)

)
1(

1 + v2

T (t)

)2
.

Recall that there is no equivalent for the elastic case, since the elastic collision
operator is trivial in dimension 1.

In dimension 3, the situation is more complicated. Let us assume for simplic-
ity that the restitution coefficient e is constant. The rescaled equation for HCS

Q( f, f ) − ∇v · ( f v) = 0,

written in Fourier variables, always admits a unique physically relevant solution2 .
As conjectured by Ernst and Brito, this solution has a very fat tail, decaying like
an inverse power law in the velocity variable (with a complicated exponent). This
solution is often called the Ernst-Brito solution. Up to changing the origin of time,
we may assume that it has temperature 1 at initial time. The relevant mathematical
reference here is the work by Bobylev and Cercignani(14) who completely justified
the conjecture of Ernst and Brito.

Once we know there is a unique HCS, the natural question is whether it is
attractive. Thus we go to self-similar variables and study convergence to equi-
librium. Using Fourier techniques again, Bobylev and Cercignani(14) did prove
convergence in the rescaled variables, under certain assumptions on the initial
datum which were later removed by Bobylev, Cercignani and Toscani.(15) The
final result is as follows (Ref. 15, Theorem 5.1). Let f (t, v) be a solution of the
spatially homogeneous inelastic Maxwellian Boltzmann equation with constant
restitution coefficient e ∈ [0, 1). Assume that the initial datum f0 has unit temper-

2 Another family of solutions was described by Bobylev, Carrillo and Gamba(12); these solutions usually
have rapid decay, but they are not nonnegative for (at least) almost all values of e. It was mistakenly
stated in Ref. 14 that there is a countable set of “exceptional” (resonant) values of e for which the
two families coincide; but such as a statement appeared to be in contradiction with the positive of
the Ernst-Brito solutions. Thus, the physically relevant self-similar solution have power–like tails for
all values of e. This issue is clarified in the last section of Bobylev and Gamba(16). (All of this was
explained to me by Bobylev.)
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ature, zero mean momentum, and let F be the associated self-similar Ernst-Brito
profile. Further assume that f0 has a finite moment of order s > 2. Then, for a
well-chosen parameter µ > 0,

e−3µt f (t, ve−µt ) → F(v),

in the sense of weak convergence (convergence of observables).
It is interesting to note that, in contrast with the heat bath problem, the

method of moments is not applicable here, since the asymptotic state has only
slow decay–yet Fourier transform continues to be useful.

Let me conclude with some variants:

– I am not aware of a decisive study for variable restitution coefficient.
Bobylev, Carillo and Gamba, (Ref. 12, Sec 6.2) have considered the case
e = e(T ) under the condition that

lim
T →0

1 − e(T )

T α
∈ (0,∞), 0 < α < 1,

and established an asymptotic Maxwellian self-similar behavior of the
form

f (t, v) � e− |v|2
2T (t)

(2πT (t))3/2
, t → ∞,

where of course T (t) satisfies the Haff law.
– The linear Boltzmann equation (for inelastic Maxwellian collisions) was

studied by Spiga and Toscani.(42)

3.7. Contracting Distances

Lyapunov functionals often yield precious information about asymptotic be-
havior, for instance if one is interested in rates of convergence. In kinetic theory, the
standard Lyapunov functionals are related to entropy and Boltzmann’s H Theorem;
but there is no H Theorem for the inelastic Boltzmann equation.

In the seventies, Tanaka discovered a new Lyapunov functional for the spa-
tially homogeneous Boltzmann equation with Maxwellian kernel. He actually
found more: a distance in which any two solutions of the Boltzmann equation
become closer:

t ′ ≥ t ⇒ d( f (t ′, ·), g(t ′, ·)) ≤ d( f (t, ·), g(t, ·)).
Tanaka’s distance is a well-known object in probability theory, also called Monge-
Kantorovich or Wasserstein distance of order 2: whenever µ, ν are any two prob-
ability measures in R

d , define

W2(µ, ν) =
√

inf E|X − Y |2,
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where E stands for expected value, and the infimum is taken over all random
variables X and Y with respective laws µ and ν. This amounts to look for a
coupling of µ and ν with maximum covariance. It turns out that W2 satisfies the
axioms of a distance (triangular inequality, etc.).

In the nineties, Toscani and collaborators found other contracting distances
which are simpler to use, of the form

ds(µ, ν) = sup
ξ∈Rd

|µ̂(ξ ) − ν̂(ξ )|
|ξ |s .

This is well-defined (finite) as soon as µ, ν have the same polynomial moments
up to order [s] − 1 (this means in particular that µ and ν should have same
mean value if s = 2; the same mean value and covariance matrix if 2 < s ≤ 3).
The behavior of these distances with respect to the Boltzmann equation has been
studied by Toscani together with various researchers such as Gabetta, Wennberg
or the author. Note that related distances have proved to be useful for the Navier-
Stokes equation, in particular after the work of Le Jan and Sznitman(36) (related
issues are discussed in the review paper by Cannone(20)).

These techniques were recently adapted by Bisi, Carrillo and Toscani(9) who
proved that d2 is contracting along solutions of both the spatially homogeneous
inelastic Boltzmann equation with Maxwell molecules, either with or without a
heat bath �v term. In the presence of �v , this is even a strict contraction, in the
sense that one has an equation like

d+

dt
d2( f (t), g(t)) + K d2( f (t), g(t)) ≤ 0,

with d+/dt standing for the upper right-derivative. Of course this implies that f
and g become exponentially closer as t → ∞; by choosing g to be the stationary
state one deduces that the convergence to equilibrium is exponentially fast.

Convergence here is again in the sense of weak convergence, however it is a
general rule that the combination of (i) exponential convergence in the sense of
such a distance, (ii) uniform in time moment bounds, and (iii) uniform in time
regularity bounds in Sobolev spaces (say

∫ |ξ |2k | f̂ (ξ )|2dξ ) imply exponential
convergence in strong sense. For instance, if moments and regularity bounds
are as strong as possible, then all derivatives of f converge uniformly in v, and
exponentially fast, towards the corresponding derivatives of the equilibrium. Thus
the convergence is as smooth as one can hope for; moreover the rate of convergence
is almost as good as in the weak distance.

In the case without heat bath, one may also wish to use this technique to study
the relaxation to the Ernst-Brito HCS, and then rephrase the convergence results
of Bobylev, Cercignani and Toscani in the setting of Fourier distances. This is not
just for the sake of formalism: contractive distances give strong information (about
nonlinear stability, for instance). But now d2 is no longer a strict contraction; this
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motivates the use of a stronger distance ds for s > 2. There is a recent work on this
topic by Bisi, Carrillo and Toscani; although computations are quite more tricky,
the result is similar, and exponential convergence to equilibrium can be proven in
this way. Exponential convergence in the rescaled variables, when translated back
in the original time variables, means that there is an improvement of the power of
t−1 in the convergence rate when one replaces the Dirac mass by the Ernst-Brito
solution:

d( f (t), δ0) = O(t−1), d( f (t), fEB(t)) = O(t−(1+α)), α > 0.

Two remarks are in order about this result. First, the exponent α which is
found by Bisi, Carrillo and Toscani agrees with the one which appears in the
previous computations of Bobylev, Cercignani and Toscani;(14,15) and the proof of
convergence to equilibrium is not new either; the main progress here is that this
is recast in the form of a true contraction estimate. Secondly, to deduce a decay
result “in physical space,” one would need to have some bounds on the solutions,
which do not seem to be known at present.

Here are some further comments. Li and Toscani have applied the tools
of Wasserstein distances to variants of the McNamara-Young equation (37), in
dimension 1. But it would also be interesting to check whether the original Tanaka
distance is nonexpanding in the inelastic case. This might be of interest if one
has in mind to do something about it in a spatially inhomogeneous context, since
Tanaka’s distance may be easier to use in that context (see for instance Carlen and
Gangbo(21)). Further note the neat identity

√
T = W2( f, δu) u =

∫
R3

f (v)v dv,

which suggests that W2 is somewhat natural in that context. A result of convergence
in Wasserstein sense would be judged by many authors to be physically relevant
in itself, while Fourier-based metrics can be criticized in that respect.

In practical problems, W2 might be plotted from experimental data, since it
can be computed explicitly for radially symmetric functions:

W2( f1, f2) =
√∫ 1

0
|F−1

1 (t) − F−1
2 (t)|2 dt,

where F−1 ◦ F is the identity, and

Fi (x) = (4π )
∫ x

0
fi (r )r2dr.

A lot of information about Wasserstein distances can be found in Ref. 45,
(Chapter 7); see also Chapter 2 in the same reference.
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3.8. Information Theory

The natural tendency of collisions is to kill information: By adding some
kind of randomness in the system, collisions make it more and more difficult to
estimate parameters of the distribution, or to reconstruct the initial distribution.
One can interpret in this way the trend to Gaussian as a tragic loss of information.
For Maxwell collision kernels, this is related to certain information-theoretical
inequalities: for instance, H (Q+( f, f )) ≤ H ( f ), where H ( f ) = ∫

f log f is the
familiar H-functional; a similar inequality holds true with the Fisher information
(for all that see Ref. 44, Chapter 4, Section 3).

Inelastic collisions however create correlations (information) at the same
time as the destroy it. It is not so clear in which sense this statement should be
taken, and maybe one can establish some variants of these information-theoretical
inequalities, that would help understanding better the evolution of information in
a granular gas.

3.9. Conclusion

To summarize, one can fairly say that during the period 2000-2005 the most
important questions about the spatially homogeneous Maxwell model of granular
gas have been solved, and that there is a rather good understanding of the evolution
of temperature and moments, the asymptotic behavior as t → ∞, and the tail
behavior. Of course there is room for refinements, but the priority now for the
Maxwell model is certainly to tackle inhomogeneous situations.

4. GRADIENT FLOW STRUCTURE

Among the simplified models of granular media that were mentioned before
is

∂ f

∂t
= ∇v ·

(
f (v)

∫
f (v∗)|v − v∗|(v − v∗) dv∗

)
+Te∇v f + α∇v · ( f v) (Te, α ≥ 0) (10)

where the first term on the right-hand side is a phenomenological model for inelas-
tic collisions (with a cooling effect), similar to the McNamara-Young operator;
the second one describes a heat bath; and the last one is a friction term.

Complicated as it may seem, Eq. (10) has a particular structure: it can be
rewritten

∂ f

∂t
= ∇v ·

(
f ∇v

δF
δ f

)
, (11)
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where the functional F reads

F( f ) = 1

2

∫
Rd×Rd

f (v) f (v∗)
|v − v∗|3

3
dv dv∗ + Te

∫
Rd

f log f + α

∫
Rd

f
|v|2
2

dv

and (δF)/(δ f ) is defined by the identity

DF · (δ f ) =
∫

δF
δ f

δ f,

where DF is the differential of F and δ f is an infinitesimal variation of f. In
other words, an infinitesimal variation of F along an infinitesimal change δ f of
the density f can be computed by integrating δF/δ f against δ f .

Equations of the type (11) are a gradient flow in a very precise sense. What
is a gradient flow? It is an equation of the form

d X

dt
= −grad F(X (t)),

where X is an unknown living in a “manifold” M (the phase space of the system),
F is an “energy” defined on M, and grad is the “gradient” operator, which is
associated to F by the relation

DF(X ) · (δX ) = 〈grad F(X ), δX〉X .

Here the left-hand side is the infinitesimal variation ofF at X under an infinitesimal
variation δX , and the right-hand side is the scalar product of grad F(X ) and δX .
Both grad F(X ) and δX should be thought of as vectors in the tangent space to M
at X, and the scalar product 〈·, ·〉X should be specified. To summarize, a gradient
flow is given by a manifold M, an energy functional F on M, and a “Riemannian
structure,” which is a family of scalar products defined (smoothly) on each tangent
space to M. It so happens that gradient flows occur everywhere in physics and
mathematics.

In the case which is of interest to us, Eq. (11) can be formally rewritten as

∂ f

∂t
= −grad F( f ),

where M is the space of probability measures, equipped with the following “Rie-
mannian” structure: whenever δ f is a small variation of density (so δ f is a function
of v), its square norm, as measured by the scalar product at “point” f, is

‖δ f ‖2 = inf

{∫
f (v)|u(v)|2dv; δ f + ∇v · ( f u) = 0

}
.

Here is how one can understand this formula: think of velocities v as being po-
sitions in phase space; particles are distributed according to density f (v) dv,
and they perform certain infinitesimal movements in such a way that the density
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varies from a certain amount δ f . You don’t know the velocities u = v̇ (veloc-
ity in phase space) of the particles, but you can try to guess: these velocities
should be compatible with the observed variation δ f , so the continuity equa-
tion δ f + ∇v · ( f u) = 0 should be satisfied. Among all admissible vector fields,
select one which is most economical, in the sense of having minimum kinetic
energy.

This structure has been studied at length by many authors, starting from
the pioneering work of Otto around 2000. It is intimately related to the quadratic
Wasserstein distance W2: in fact W2 is nothing but the associated geodesic distance.
A lot of information about that can be found in (Ref. 45, Chapter 8).

Why are we doing all that? One advantage of identifying a gradient flow
structure is that it yields interesting recipes for computing, say derivatives of
functionals along the flow, in terms of gradients and Hessians; this is what is
described in (Ref. 45, Chapter 8) as Otto’s calculus. Another advantage of such a
formalism is that the convexity properties of the energy functional might help the
study of convergence to equilibrium. For instance, if F is λ-uniformly convex (i.e.
the Hessian operator, in an appropriate sense, is greater than λ Id), then trajecto-
ries get closer to each other like O(e−λt ), and there is exponential convergence
to the unique infimum f∞ of F . This also comes with automatic inequalities
such as

λ

2
W2( f, f∞)2 ≤ F( f ) − F( f∞) ≤ 1

2λ
‖grad F‖2 = − 1

2λ

(
dF
dt

)
.

One has to be careful: convexity of a functional is here understood as con-
vexity along geodesics of the induced structure. For instance

∫
f |v|2dv should

be considered as strictly convex, and − ∫
f |v|2dv as strictly concave! (although

both are formally linear functionals of f . . .) The technical word is “displacement
convex,” which means more or less that the functional is convex along variations
of densities which correspond to particles going in straight lines.

In the present case, the convexity of the “interaction potential” |v − v∗|3
guarantees that the first term in F is displacement convex; it is known from the
work of McCann that the second term is also displacement convex; finally the last
term is also displacement convex (uniformly if α > 0).

Using this apparatus and some work, Carrillo, McCann and the author(23,24)

studied in some detail the convergence to equilibrium for (10). The convergence
itself was already established by Benedetto, Caglioti, Carrillo and Pulvirenti(6) (in
dimension 1 only), so the novelty lied in the derivation of explicit bounds on the
rate of convergence.

The conclusions can be summarized roughly as follows: For Te > 0 (heat bath
case) there is always a unique equilibrium (up to translation if α = 0). If α > 0
then the convergence is at least like O(e−αt ). If α = 0 there is still exponential
convergence, and one can obtain a lower bound on the rate of convergence. The
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main problem here is to overcome that lack of convexity of the cubic potential
close to v = v∗; the key thing is that the heat bath forces the velocity distribution
to be spread out enough that the system is not concentrated too much (if two
particles have very close velocities v and v∗, so that they interact quite weakly,
they can still interact with particles of velocity w which is far both from v and v∗;
this mechanism of indirect interaction leads to an efficient relaxation even though
the convexity is degenerate).

All these results are naturally expressed in terms of W2 distance, but they can
be combined with regularity estimates to obtain convergence in, say, supremum
norm, under just an assumption of finite kinetic energy (it is interesting to note
that F( f ) will become finite for any positive time even if it is infinite at time 0;
this can be interpreted as a parabolic regularization effect, but is best thought of as
a manifestation of the displacement convexity of the functional). For more details
the reader can refer to Ref. 23, 24.

Let me note in passing that the existence of these models of granular media
is a true gift to us mathematicians. Indeed, this is one of the very rare examples
available in which one encounters an energy functional F containing an inter-
action potential with a convex interaction potential (of course this is possible
here because the phase space is really a velocity phase space, and interaction
increases with the difference of velocities, while it should decrease with the
difference of positions). Without this example, part of the theory of gradient
flows with interaction potential would have had (so far) essentially no case of
application.

Remark. In the case without heat bath or friction, one may wish to study the
relaxation to HCS by going to self-similar variables; then the equation is

∂ f

∂t
= ∇v · ( f ∇v( f ∗ |v|3/3)) − ∇v · ( f v),

and one is in deep trouble since the antidrift is displacement concave. The equilib-
rium for the rescaled equation is very simple: a combination of two Dirac masses,
f∞ = (δ−1/2 + δ1/2)/2. A linear stability analysis cannot really say anything be-
cause the tangent space is extremely degenerate. Actually, we shall see later that
in general, the convergence is not exponential.

5. ONE-DIMENSIONAL RIGIDITY

Reduction of dimension leads to simplified models with more estimates, and
less room to behave strangely. This might be a good or a bad thing. In this section
I shall discuss briefly two examples in which a one-dimension assumption leads
to additional estimates; and in both cases the conclusion might be that the model
is to a certain extent inappropriate.
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5.1. Clustering in Dimension 1 is Difficult

Benedetto and Pulvirenti(8) studied the possibility of clustering in dimension 1
of velocity and dimension 1 of space:

∂ f

∂t
+ v

∂ f

∂x
= Q( f, f ),

where Q( f, f ) is an inelastic hard sphere collision operator, with a restitution
coefficient given by

e(|v − v∗|) = 1

1 + a|v − v∗|β , 0 < β < 1. (12)

The possibility of clustering is related to the amount to which the H Theorem
is violated, so one may study the entropy dissipation (as opposed to entropy
production) and try to bound Ḣ from above, where H (t) = ∫

f (t, ·) log f (t, ·). It
is easy to show that

Ḣ (t) ≤ 1

2

∫
dx dv dv∗(J − 1)|v − v∗| f f∗. (13)

The right-hand side looks a bit like
∫

ρ2
√

2, where ρ and T respectively stand for
density and temperature, so there is no a priori control on this right-hand side from
just basic conservation laws.

At this point Benedetto and Pulvirenti use a variant of a trick introduced by
Bony and adapted by Cercignani: they consider functionals of the form

Iα(t) =
∫

x<y
dx dy

∫
dv dv∗ ϕα(v − v∗) f (t, x, v) f (t, y, v∗),

where ϕα(z) = sign (z)|z|α . In contrast with the right-hand side of Eq. (13), the
functional Iα is essentially well-controlled: if one forgets about ϕα it looks like
(
∫

ρ)2, which is well-controlled thanks to just basic conservation laws. In that
respect the condition x < y in the integration does not change anything; but it
will have an important impact when one computes the time-derivative of Iα under
solutions of the Boltzmann equation. Indeed, the action of the streaming term
v∂x f will result, after integration by parts, in the appearance of a Dirac function
δy=x , and then we obtain something that looks like the right-hand side of Eq. (13).
Here is a more precise formulation: define

Iα(T ) =
∫ T

0

(∫
dx dv dv∗|v − v∗|1+α f f∗

)
dt,

then there are some relations between Iα and Iα:

Iα(T ) ≤ Iα(0) − Iα(t) + CI(1+β)α(T ),

where C is α constant depending on a, whose value is 0 if (1 + β)α = 1.
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When comparing the expressions for Iα and Iα , one sees that in effect what
has been done is the replacement of a t-integral by an x-integral; obviously this is
a particular feature of dimension 1.

Benedetto and Pulvirenti use this trick to get a control of Iα , and finally of H.
Then they easily conclude that, at least for small total mass, there is no blow-up
(clustering) for the model. The reader may consult(8) for much more information.

Since this conclusion is at variance with results of numerical simulations for
granular media, one can consider the result as physically irrelevant, and wonder
where the problem lies. Is it the elasticity law? For the proof to work it is sufficient
that e behaves like (12) for small values of |v − v∗|, and β really has to be strictly
positive. Such constitutive laws do not a priori seem unrealistic, but maybe there
is an unexpected problem here. The problem might also lie in the assumption of
smallness of mass, although this would not really be expected. The final possibility
is that the problem is with the one-dimensionality assumption which does not leave
enough room for clustering.

5.2. HCS Are a Bad Approximation for the McNamara-Young Model

Now I shall consider what may be the most simple phenomenological ki-
netic model for granular medium: the spatially homogeneous McNamara-Young
equation in dimension 1,

∂ f

∂t
= ∂

∂v

(
∂

∂v

(
f ∗ |v|3

3

))
.

To fix ideas, assume that the mean velocity is 0. As time goes to infinity, f (t, ·)
converges to δ0 like O(t−1). The question now is whether f (t, ·) is better approx-
imated by the HCS, which in that case is just

S(t) = 1

2

(
δ− 1

2t
+ δ 1

2t

)
.

To study that problem, let us go to rescaled variables, which adds an anti-drift
term:

∂ f

∂t
= ∂

∂v

(
f

∂

∂v

(
f ∗ |v|3

3

))
− ∂

∂v
( f v), (14)

and then the HCS transforms into the stationary solution S = (δ−1/2 + δ1/2)/2.
It was proven by Benedetto, Caglioti and Pulvirenti(7) that there is indeed

convergence, in rescaled variables, to the stationary state. This conveys the idea
that the HCS is indeed a better approximation to the solution. However, it was later
proven by Caglioti and the author(19) that the convergence is actually very poor:
essentially, it can be at best like O(t−1) in the rescaled variables, which means
a logarithmic in time improvement at the level of the original variables. This is
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actually a good example in which a quantitative result essentially kills a qualitative
one.

Here is an idea of the argument. Equation (14) has the form of a continuity
equation, so it can be formally solved by the characteristics method (in velocity
space): f (t) can be interpreted as the velocity distribution for a bunch of particles
whose velocity evolves according to

dv

dt
= ξ (v) ≡ v −

∫
R

(v − v∗)|v − v∗| f (t, v∗) dv∗.

Since we are in dimension 1, the associated flow is order-preserving: particles with
a higher velocity always keep a higher velocity than particles with a lower velocity.
The vector field ξ is a function on R which goes to +∞ for v → −∞,−∞
for v → +∞, and is successively decreasing, increasing, decreasing again. Its
derivative is maximum at the median of f. Since ξ is an integral expression of
f and vanishes for f = S, it is plausible that ξ can be controlled in terms of some

weak distance of f to S; actually one can show that

∂ξ (t, v)

∂v
≤ 2W2( f (t, ·), S).

Now what happens as t → ∞? Since the flow is order-preserving, the left-
half of the particles should go to velocity −1/2, while the right-half should go
to velocity +1/2. (Possible trajectories in (t, v) variables are represented on the
figure below.)

If there are some particles that are around the median of f, it will be necessary
to separate them, resulting in a considerable stretching in velocity space. But the
maximum amount of stretching is controlled by an upper bound on the divergence
of the vector field, which in the present case means an upper bound on the derivative
of ξ , and we have seen that this derivative is controlled by the distance of f to S.
So when the solution approaches S, the amount of stretching which is available
vanishes, precisely when a strong stretching should take place! Combining all
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these elements, it is possible to show that∫ T

0
W2( f (t, ·), S) dt ≥ K log T (15)

as T → ∞.
A similar estimate holds true even if there is no mass close to the median

of f : in that case one can use the property that a very strong negative divergence
of the flow is necessary to concentrate mass around the points −1/2 and +1/2.
Consult Ref. 19 for more details.

The bound (15) prevents any convergence rate like O(t−(1+ε)), no matter how
small ε is. In this sense the convergence has to be very slow, and, as I said above,
in the original variables W2( f (t), St ) cannot be much smaller than O(1/(t log t)),
while W2( f (t), δ0) is O(1/t). The physical relevance of this conclusion seems
to be corroborated by numerical simulations of A. Barrat, indicating that the
convergence to self-similar solutions is indeed poor for large times.

Once again it is not clear where the problem lies. Maybe this is due to the
oversimplified form of the HCS, or the fact that it has a singular part, and some
vacuum regions (not all velocities lie in the support). Maybe this is also due to the
one-dimensional nature of the equation.

6. TRUE INELASTIC HARD SPHERES

To caricature, mathematical research on the inelastic Boltzmann equation
focused on baby models from 1997 to 2000, then turned to the Maxwell model,
and around 2004 appeared the first works devoted to the true inelastic hard spheres
model, while staying spatially homogeneous. Here below is a rather exhaustive
list of references:

– Gamba, Panferov and the author(32) set up the framework and devised
several techniques that would be used again in the sequel;

– Bobylev, Gamba and Panferov(17) proved an important technical result for
the study of tail behavior in integrated version;

– Mischler, Mouhot and Rodriguez Ricard(39,40) sharpened and generalized
all the previous results; in these works are considered for the first time
general restitution constitutive laws with a dependence of e upon T or
|v − v∗|;

– In a still unpublished sequel to their first work, Gamba, Panferov and the
author pushed some maximum principle techniques to study pointwise tail
estimates.

– Some results about the linear case were obtained by Lods and Toscani(38)

(they guessed the form of the equilibrium by first replacing the model by
its grazing collision limit).
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In this section, I shall informally describe some of the techniques and results
that can be found in these works. For simplicity, I shall assume the restitution
coefficient to be constant, but in most cases this assumption can be relaxed.

6.1. Energy Dissipation

Consider the spatially homogeneous inelastic Boltzmann equation; fix the
mean momentum to be zero, and as usual assume that the total mass is normalized
to 1. It is easy to show that the energy dissipation due to collisions is

K

∫
f f∗|v − v∗|3dv dv∗ (K > 0).

Thus the energy does not satisfy a closed equation as in the case of Maxwell
collisions. Yet something can be done: by Jensen’s inequality, applied with the
convex function | · |3 and the probability measure f (v) dv,∫

f (v∗)|v − v∗|3dv∗ ≥
∣∣∣v −

∫
f∗v∗dv∗

∣∣∣3
= |v|3.

Then, by Hölder’s inequality (or Jensen’s inequality with the convex function x3/2),∫
f (v)|v|3dv ≥

(∫
f (v)|v|2dv

)3/2

.

Then we can write the temperature equation in the form

dT

dt
≤ −K T 3/2 + contributions from noncollisional terms.

This results in two main consequences: First, a priori estimates on the temper-
ature: the temperature is always controlled uniformly in time, be it for the “raw”
Boltzmann equation or in presence of a heat bath, an anti-drift or a shear flow
additional term. Secondly, for the plain Boltzmann equation we recover a half of
Haff’s law (if I may say), namely

T (t) ≤ C

t2
.

The other half is true also, as will be seen later.

6.2. Moment Estimates

Moment equations can still be written, but now they are not closed any longer.
Yet inequalities can be hoped for. If we are interested in the moment of order s > 2,
then the relevant quantity is

(|v′|s + |v′
∗|s) − (|v|s + |v∗|s).

Povzner inequalities have been used for many years in kinetic theory to bound this
from above; see (Ref. 44, Chapter 2, Sec. 2.2). The search of precise tail estimates
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motivated the development of refined such inequalities, taking into advantage the
integration over the collision parameter. The following estimate, due to Bobylev in
the elastic case, was obtained by Bobylev, Gamba and Panferov(17) in the inelastic
setting: for any integer p ≥ 1,

1

4π

∫
S2

(|v′|2p + |v′
∗|2p − |v|2p − |v∗|2p) dσ ≤ −(|v|2p + |v∗|2p) (16)

+ γp(|v|2 + |v∗|2)p, γp = O

(
1

p

)
.

Although it can be formulated in very elementary terms and does not involve
any partial differential equations, this estimate is very tricky. A nice observation
made in Ref. 17 to simplify the proof is the following: whenever ϕ1 and ϕ2 are
nondecreasing functions on [−1, 1], and α1, α2 are given unit vectors, then∫

S2

ϕ1(α1 · ω) ϕ2(α2 · ω) dω

is maximum when α1 = α2. The rest of the proof, unfortunately, is plenty of heavy
computations and convexity arguments.

Why is (16) interesting? Expand the last term using the binomial formula,
then the terms of higher degree, |v|2p and |v∗|2p, appear with a positive coefficient
γp, which is negligible in front of the negative coefficient −1 at the beginning of the
right-hand side of (16). All the terms that remain have the form O(|v|2�|v∗|2p−2�)
for some positive integers �. Fix such a term and integrate the whole (16) against
f (v) f (v∗)|v − v∗|dv dv∗ to compute the rate of change of the moment of order
2p: the contribution of that term is bounded above by something like∫

f (v) f (v∗)(|v| + |v∗|)|v|2�|v∗|2p−2�dv dv∗,

which in turn can be bounded in terms of moments of order 2�, 2� + 1, 2p −
2� and 2p − 2� + 1, all of which are strictly less than 2p. It is not so for the
contribution of the first term in the right-hand side of (16), which leads to a
negative term involving moments of order 2p + 1. To summarize, (16) implies
differential inequalities of the form

d M2p

dt
≤ −K M2p+1 + C

∑
�

(M2�M2p+2�−1 + M2�+1 M2p+2),

where Ms stands for the moment of order s. From Jensen’s inequality again, this
implies

d M2p

dt
≤ −K M1+(2p)−1

2p + C
∑

�

(M2�M2p+2�−1 + M2�+1 M2p+2),
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and after a bit of work one actually deduces

d M2p

dt
≤ −K M1+(2p)−1

2p + C,

where the constants C and K may depend on the kinetic energy, but not on higher
moments.

This has two consequences. First, for each fixed s > 2, the moment of order s
becomes immediately finite even if it is infinite at time 0 (so there is instantaneous
destruction of fat tails; in the elastic case this observation was first made by
Desvillettes in the beginning nineties). Secondly, by using the precise form of
(16), one can refine the computations to get bounds on (stretched) exponential
moments, since ∫

f (v)ea|v|s dv =
∞∑

k=0

ak

k!

(∫
f (v)|v|skdv

)
.

(This was actually Bobylev’s initial motivation, in the elastic case.)
Using this apparatus, Bobylev, Gamba and Panferov(17) prove that steady

state(s) f∞(v) satisfy

∃a, A > 0;
∫

eA|v|s f (v)dv = +∞,

∫
ea|v|s f (v)dv < +∞,

where

s =


3/2 for the heat bath case;
2 for heat bath + friction;
1 for the HCS.

These bounds establish the validity of the conjectures about the large-
velocity behavior of the stationary states, in an integrated sense. Estimates such
as

∫
ea|v|s f∞ < +∞ may be considered as an integrated upper bound on f∞,

while estimates such as
∫

eA|v|s f∞ = +∞ may be considered as an integrated
lower bound. The same authors also show that for the shear flow problem, steady
states satisfy

∫
ea|v| f∞(v) dv < +∞ for some a > 0, but are unable to get a lower

bound.
These estimates were proven only for the stationary solution; there is reason

to believe that

– the integrated lower bound is always true;
– the integrated upper bound is propagated in time, that is, if it holds true for

the initial datum then it holds true for all times;
– a weaker version of the integrated upper bound (with other exponents)

automatically appears for positive times, whatever the initial datum.
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6.3. Regularity Estimates

One of the important discoveries by Lions in the nineties was the regularity
of the gain operator: the operator Q+ is regularizing, meaning that Q+( f, f )
is typically smoother than f itself. In contrast, Q−( f, f ) typically has the same
regularity as f. Many versions exist under different sets of assumptions; if the
collision kernel was perfectly smooth and compactly supported, avoiding frontal
and grazing collisions as well as large or small relative velocity collisions, then
there would be a gain of (d − 1)/2 derivatives (1 derivative in dimension 3). For
realistic operators such as the hard sphere kernel, one cannot in general prove
better than just a fractional gain. See (Ref. 44, Chapter 2, Sec. 3.4) for references
and discussion. It is important to note that properties of improved smoothness can
be transformed into properties of improved integrability.

This feature was recently used by Mouhot and the author(41) as the basis for
the regularity theory of the spatially homogeneous Boltzmann equation with hard
spheres. It is easy to understand why the property of Q+ is useful for regularity
estimates: think that Q− resembles a multiplication operator, then solutions of the
spatially homogeneous Boltzmann equation should have a regularity comparable
to solutions of

∂ f

∂t
+ K f = S,

where S is a source term, smoother than f.
Here are the consequences that can be drawn: First, a priori integrability

bounds which prevent blow up of the solution, as well as extinction in finite time.
Next, there is a lower bound on the temperature in rescaled variables; Mischler
and Mouhot(40) use that to prove the lower bound in the Haff law: for the “raw”
Boltzmann equation,

T (t) ≥ c

(1 + t)2
.

In the case of the Boltzmann equation with an additional anti-drift, there is
propagation of regularity, and moreover there is exponential decay of singularities:
the solution f (t) can be decomposed into S(t) + R(t), where S(t) is very smooth
(of arbitrary smoothness, fixed in advance), and the remainder R(t) decays expo-
nentially fast. This is proven by Mischler and Mouhot.(40) One of the technical
tools used there is an inelastic variant of the Carleman representation (see Ref. 44,
Chapter 2, Sec. 4.6, in the elastic case3 ) which is a way to write the Boltzmann
collision operator parameterized by the precollisional velocities ′v and ′v∗.

In the case of the heat bath, there is in addition instant regularization.(32)

3 Beware: In the published version of Ref. 44 there was a typo in the Carleman formula: the collision
kernel should be B̃ and not B; both symbols stand for different expressions.
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6.4. Maximum Principle

Moment methods and Povzner inequalities lead to integrated tail estimates,
but what about pointwise estimates? Is it true that in the case of the heat bath one
has

ce−A|v|3/2 ≤ f∞(v) ≤ Ce−A|v|3/2
?

(Ideally one could hope that such an estimate holds true with a = A, but for the
moment this looks out of reach.)

Pointwise estimates are often associated with maximum principles. The stan-
dard maximum principle for the Laplace operator is well-known: let f be a solution
of v f ≥ 0 in a domain �, with f ≤ M on the boundary ∂�. Then it follows that
f ≤ M in the whole of �. In other words,

v f ≥ 0 ⇒ sup
�

f = max
∂�

f.

There is also a time-dependent version of this maximum principle: if f ≤ M
at time t = 0, ∂t f − v f ≤ 0 in � and f ≤ M on ∂� × [0, T ), then again f ≤ M
in the whole of � and for all times t ∈ [0, T ).

Gamba, Panferov and the author(32) use this principle to show a lower bound,
for the heat bath problem, of the form

f∞(v) ≥ ce−A|v|3/2
.

The idea is in two steps: first, the smoothness and localization implies that f is
bounded below on a certain small ball Br (v0), with center v0 and radius r (v0 is
not known with precision, but it is localized inside a larger ball). Then one can
use a comparison function ϕ(t, v) which is singular at v0, but very smooth outside
Br (v0), identically zero for t = 0, has the correct velocity decay as e−A|v|3/2

, and
such that

∂tϕ ≤ vϕ − K |v|ϕ.

In fact,

ϕ(t, v) = K exp(−bt − a(1 + |v|2)3/4)

does the job for well-chosen parameters a, b and K.
Since on the other hand (by the trivial bound Q+ ≥ 0 and the easy bound

Q− ≥ K |v| f )

∂t f ≥ v f − K |v| f

the maximum principle, applied in the complement of the ball Br (v0), implies that
f stays above ϕ for all times. Now we have a control of f inside Br (v0), and a
control of f outside Br (v0), and the desired bound follows. See Ref. 32 for more
explanations.
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When the operator v is replaced by the anti-drift, Mischler and Mouhot(40)

have a variant of this argument which implies a lower bound like K e−A|v| for
radially symmetric stationary states (so a similar bound holds true for radially
symmetric HCS in the original variables). It is likely that this argument adapts to
time-dependent solutions, not necessarily radially symmetric, but the job remains
to be done.

Upper bounds are more tricky because the Q+ operator needs to be controlled
by above. Here again, Mischler and Mouhot obtain good bounds by above like
O(e−a|v|) for stationary radially symmetric solutions with the anti-drift, but then
the method seems not to adapt to the time-dependent case.

To go further in this direction, Gamba, Panferov and the author built on an
idea suggested in Ref. 44, Chapter 2, Sec. 6.2, namely to use a maximum principle
for the Boltzmann operator. Here is an informal version of this principle, stated
for instance in the heat bath case. Let f (t, v) satisfy

∂ f

∂t
= Q( f, f ) + v f

and let ϕ(t, v) be a “reasonably smooth” comparison function satisfying
f (0, v) ≤ ϕ(0, v) for all v,

∂tϕ − Q( f, ϕ) − vϕ ≥ 0 in [0, T ) × �,

f (t, v) ≤ ϕ(t, v) outside �, for all t ∈ [0, T )
.

Then f ≤ ϕ everywhere in [0, T ) × R
3. Here Q( f, ϕ) is defined in weak form by∫

Q( f, ϕ)ψ =
∫

|v − v∗| f∗ϕ(ψ ′ − ψ).

This principle looks rather similar to the usual maximum principle for the
heat equation; there is however an important difference: a control of f by ϕ is
assumed everywhere outside �, not just at the boundary ∂�. There is a good
reason for that, namely the fact that the Boltzmann collision operator is nonlocal.

In practise, to use this principle it is desirable to have nice pointwise upper
bounds on the gain term Q+( f, ϕ). Such bounds can be deduced from integrated
bounds: indeed, the spreading properties of Q+ make it possible to recover point-
wise bounds on Q+ from integrated bounds on f. A nicer example, worked out by
Gamba, Panferov and the author in the case of elastic collisions, is the neat bound

Q+( f, e−β|v|2 ) ≤ C

(∫
f (v)eβ|v|2 dv

)
e−β|v|2

(for the elastic collision operator).
In the elastic case, this approach was completely worked out and it was

proven by the same authors(31) that if the initial datum is bounded above by
a Maxwellian, then this property holds true for all times (this was one of the
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last irritating open problems in elastic spatially homogeneous kinetic theory). A
similar study is on its way in the inelastic context; although it is not complete due
to technical complications, it looks safe to bet that the same method does work in
the end, and shows that if the initial datum is bounded above by Ce−a|v|3/2

, then
f (t, v) ≤ C ′e−a′ |v|3/2

for all times t ≥ 0.

6.5. Summary

Let me now summarize the main results known to this date for the spatially
homogeneous inelastic hard spheres model. I shall focus on two cases: the “heat
bath,” or “driven” case,

∂ f

∂t
= Q( f, f ) + v f,

and the free or “undriven” case, distinguishing between the unrescaled version

∂ f

∂t
= Q( f, f )

and the rescaled version

∂ f

∂t
= Q( f, f ) − ∇v · ( f v).

6.5.1. Temperature

It is proven that{
c ≤ T (t) ≤ C (driven)
c

t2
≤ T (t) ≤ C

t2
(undriven, unrescaled)

where c, C are positive constants depending on the initial datum.

6.5.2. Integrated Tail Behavior

It is proven that equilibrium distributions satisfy

∫
R3

f∞(v)ea|v|3/2
dv < +∞,

∫
R3

f∞(v)eA|v|3/2
dv = +∞ (driven)

∫
R3

f∞(v)ea|v| dv < +∞,

∫
R3

f∞(v)eA|v| dv = +∞ (undriven, rescaled).

The lower bound should also be true for time-dependent solutions.
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6.5.3. Pointwise Tail Behavior

It is very likely that we can prove{
ce−A|v|3/2 ≤ f∞(v) ≤ Ce−a|v|3/2

(driven)
ce−A|v| ≤ f∞(v) ≤ Ce−a|v| (undriven, rescaled).

At present, only the lower bound in the driven case was proven, while both bounds
were established in the undriven case, but only for radially symmetric solutions.
Moreover, the lower bound also holds true for time-dependent solutions in the
driven case, and this should also be the case in the undriven case.

6.5.4. Stationary States

In the driven case, it is known that there exists at least one smooth (with
bounded derivatives up to any order) positive radially symmetric stationary state,
with fast decay at infinity. It is not known whether this state is unique. In the
undriven (unrescaled) case, it is known that there exists at least one smooth
positive radially symmetric self-similar HCS. It is not known whether it is unique
(say, unique for a given value of the initial kinetic energy).

6.5.5. Convergence to Equilibrium

In the driven case, it is not known whether there is convergence to equilibrium.
A theorem of uniqueness of the stationary state would help, but would still not be
sufficient to conclude because of the absence of known Lyapunov functional. In
the undriven case, it is known that there is convergence to a Dirac mass, but it is
not known whether the HCS are attractive.

6.5.6. Conclusion

From the qualitative point of view we have a reasonable deal of information,
and predictions of physicists have been confirmed at theoretical level, although by
means of a very sophisticated machinery (the original papers quoted in this text
might appear quite hard to read for non-experts of mathematical kinetic theory).

Unlike for the Maxwell model, we are unable to prove uniqueness of equilib-
rium, and we are in bad need of a new idea to resolve the problem of the asymptotic
behavior in large time. Numerical simulations indicate that the convergence should
be excellent, and that the equilibrium should be unique. Apart from the possibility
of finding a miraculous Lyapunov functional (maybe in the form of a variant of
the contracting distances known in the Maxwell case), there is no idea in the air.

Mischler and Mouhot recently tried to tackle the problem of uniqueness of the
HCS by considering a family of stationary solutions (with the anti-drift) depending
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on a restitution coefficient e going continuously from 1 to 0 (the coefficient in front
of the anti-drift is rescaled with e in such a way as to go to 0 when e → 1, so that
there is a nontrivial Maxwellian equilibrium for e = 1). There is an H Theorem
with an O(1–e) error term, which may imply the uniqueness close to e = 1 by
a perturbative argument. Then they try to use a continuity argument letting e
decrease continuously to 0, and showing that no bifurcation is possible in the
family of equilibria. At a bifurcation point, there would be appearance of a new
conservation law for the linearized Boltzmann equation. Such an event cannot
really be ruled out a priori (after all we have already seen in the Maxwell case that
some values of the restitution coefficient lead to “resonance” effects and change
of qualitative properties of the HCS) but might be dismissed by a theorem of
classification of conservation laws for the linearized equation, proving that only
mass and momentum are preserved by collisions. Would that attempt work out in
the end, it would be proven that HCS are unique, leaving some hope for a proof of
convergence.

7. THE FUTURE OF INELASTIC KINETIC THEORY?

It seems clear that the next step in the mathematical kinetic theory of gran-
ular media is the introduction of the space variable and the study of clustering
or breaking of space homogeneity. In fact, for engineers there is essentially no
interest in spatially independent models, and it has been a long time since the
spatial structure of granular flows has been studied. (The reader can consult the
recent textbook by Brilliantov and Pöschel(18) to find references and pointers to
the physical literature.) However, even for engineers, subtle phenomena such as
clustering seem to retain some mystery.

Physicists say that the HCS is very unstable, unless the gas is driven by
strong boundary conditions. In a personal communication, J. Brey has suggested
that there should be an inhomogeneous stable self-similar solution which would
describe the local behavior of the solution (this would be a fascinating eventuality).
In any case the behavior which is observed in experiments or simulations is often
well-described by a separation between a cold, high-density phase and a warm,
low-density one, with pattern formation and “inverse Maxwell demon.”

As for the mathematical justification of these observations, we are nowhere.
The only available inhomogeneous results are the works by Benedetto and
Pulvirenti(8) indicating that for certain restitution coefficient laws there is no
blow-up in dimension 1. We do not know whether the collapse should be expected
in finite or infinite time (in which case finite-time collapse in numerical simula-
tions should be attributed either to measurement errors or to a breakdown of the
Boltzmann model).

It seems reasonable to start the study in the case of Maxwell collisions,
where convergence to HCS is proven and there are contracting distances; it also
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seems a good idea to start with the close-to-equilibrium regime. Discussions
with C. Mouhot let me suggest the following. The linearized Boltzmann collision
operator should have a nice spectral theory (even that is not so clear because of
the slow decay of the HCS) when associated with either the heat bath term or the
anti-drift. However, one can think that these two cases behave radically differently
when one adds the transport term −v · ∇x : there should be destabilization by the
anti-drift, not by the diffusion. Would that guess be true, this would be the first hope
of displaying some instability of the homogeneous description. The dependence
of that effect upon the dimension should be checked.

On the contrary, in the case of the heat bath, the good spectral properties
of the linearized operator should make it possible to prove stability of weak
inhomogeneity: indeed, if f0 is an initial datum that lies at distance O(ε) from
a spatially homogeneous datum f h

0 , then one can hope that f (t) lies at distance
O(εeCt ) from the spatially homogeneous solution f h(t); then for t ≥ T, f h(t)
should be be sufficiently close to the HCS, that linearization is possible, and then
for ε small enough, also f (t) would be very close to the HCS. From that point on
the good linear properties can be exploited.

Getting out of the perturbative regime looks completely hopeless for the
moment. After all, even in the elastic case, there is still no good nonperturbative
theory of the spatially inhomogeneous Boltzmann equation, and inelasticity makes
things much worse. Even the rather soft DiPerna-Lions theory of weak solutions
does not extend to the inelastic Boltzmann equation! (In this direction are available
only some works about the inelastic Enskog model.(30))

Some day one will have to discuss boundary conditions more precisely than
is done now. While the heat bath model might be in first approximation a honest
model for shaking, it seems clear that it does not describe accurately the com-
plicated space-dependent phenomena which occur in such a process. This looks
extremely delicate.

Some other day one will have to rediscuss the relevance of the kinetic descrip-
tion: Is there molecular chaos or not? What qualitative differences between the
Boltzmann and Enskog descriptions? How to choose the correlation function in the
Enskog description? Does the kinetic description break down in presence of clus-
tering? How to couple it with hydrodynamic equations? For the most part, these
questions are open from the physical point of view, and seem to arise incredible
difficulties.

DEDICATION

This review paper is dedicated to the memory of Frédéric Poupaud, one of
the most inventive specialists of kinetic theory in recent years, equally at ease in
theory and modelling. Frédéric explored many areas of physics, from quite pure



820 Villani

to quite messy, with the eyes of kinetic theory. His untimely death is a heavy loss
for our community and for science in general.
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